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1. Introduction 

Over the past three decades, Roger Penrose has provided us with several 
elegant mathematical techniques to unravel the structure of  zero rest mass 
fields [ 1 ]. In particular, we have learnt from him that the description of  these 
fields is especially simple if we decompose them using two-component spinors. 
For spin-I and spin-2 fields - which mediate all four basic interactions - this 
amounts to focussing on the eigenstates of  the Hodge-duality operator. It is 
striking indeed to see how, in the classical theory, the non-linear Yang-Mills 
and Einstein equations simplify in the self dual (or anti-self dual) sector. 
The richness of  the mathematical structure of these solutions tempts one to 
conjecture that the notion of  self duality should play a significant role in the 
quantization of  these fields. 

To see how this may come about concretely, let us first recall the rele- 
vant features of  the theory of  fields satisfying free relativistic equations in 
Minkowski space. The space of complex solutions to these equations provides 
us with unitary representations of  the Poincar6 group [2]. These are classified 
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by the values of the two Casimir operators, mass and spin, or, if the mass 
is zero, helicity. Let us focus on Maxwell fields. Then the construction yields 
four irreducible unitary representations consisting, respectively, of positive 
frequency self dual fields, positive frequency anti-self dual fields, negative fre- 
quency self dual fields and negative frequency anti-self dual fields. All of them 
have zero mass. The first and the fourth have helicity + 1 while the second 
and the third have helicity -1  [3]. In the quantum theory, one generally 
chooses to work with the positive frequency polarization: one-photon states 
are represented by positive frequency fields and more general quantum states 
by entire holomorphic functionals on the one-photon Hilbert space. In this 
description, positive helicity photons correspond to self dual fields and the 
negative helicity ones to anti-self dual fields. 

Note, however, that at least in principle one could have adopted another 
strategy: one could have restricted attention just to self dual fields. * From 
the result [3] on the helicity of various sectors it would appear that, at least 
a priori, such a description should be viable. The positive frequency fields 
would now yield the helicity + 1 photons and the negative frequency ones 
the helicity -1  photons. The strategy seems attractive because one would not 
have to begin by decomposing fields into positive and negative frequency 
parts, an operation which has no counterpart beyond the linear field theory 
in Minkowski space. Decomposition of fields into self dual and anti-self dual 
parts, on the other hand, is meaningful both for the non-linear gauge fields 
and general relativity. This then would be a concrete way in which self duality 
could play a key role in quantization. 

Why has this avenue not been pursued in the literature? As we shall see 
in some detail, if one uses a self dual polarization in a straightforward way, 
one runs into a problem: although the polarization is well defined, unlike in 
the positive frequency case, it fails to be K~ihler. More precisely, the situation 
is as follows. In the standard quantization procedure, one is naturally led 
to define the inner product on positive frequency fields F + in terms of the 
symplectic structure t2: (Fl+ , F + )  := ~2 (Fl+, F2 + ). The same principles lead 
one, in the case of the self dual polarization, to use the above expression 
for the inner product replacing only the positive frequency fields by the self 
dual ones. However, this strategy now fails: the resulting norm is no longer 
positive definite. The origin of the problem is of course that in the self dual 
polarization, one works with both positive and negative frequency fields and 
the inner product given above yields negative norms on negative frequency 
fields. One may attempt to rescue the situation by changing the inner product, 
introducing a minus sign by hand on the negative frequency part of the self dual 

• Just as the description in terms of negative frequency fields simply mirrors the standard, 
positive frequency description, that in terms of anti-self dual fields would mirror the one in 
terms of self dual fields. 
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sector. This would of course resolve the problem of negative norms. However, 
now a new problem arises: the algebra of field operators is no longer faithfully 
represented on the resulting Hilben space! Thus, if one wishes to work in 
a representation in which the self dual Maxwell connection is diagonal, one 
must modify the quantization procedure. In particular, a new input is needed 
to select the appropriate inner product. 

The purpose of this paper is to supply the necessary modifications in the 
case of the free Maxwell field. 

For several decades now there has been available a fully satisfactory quan- 
tum theory of photons in terms of positive frequency fields. It is therefore 
clear that, were we interested only  in Maxwell fields, there is really no need 
for the alternate strategy mentioned above. The motivation for this work 
comes, rather, from the quarters of quantum general relativity. Through his 
non-linear graviton construction, Penrose [4] has taught us that unexpected 
simplifications arise when one deals with self dual gravitational fields in gen- 
eral relativity. Einstein's field equations suddenly become more transparent, 
readily malleable and fully manageable. While .the chances of finding a general 
solution to the full Einstein equations still appear to be remote, for fifteen 
years we have known that, inspire of all the non-linearities, the self dual 
sector is completely integrable [4,5]! Therefore, it seems natural to base a 
non-perturbative approach to quantum general relativity on this sector [6]. 
Such an approach is indeed being pursued vigorously and has already led to 
some unexpected insights. (For recent reviews, see refs. [7,8].) To have a 
greater confidence in this approach, however, it is necessary to verify that 
the main physical ideas and mathematical techniques it uses are viable in 
familiar theories as well. It is in this spirit that we wish to recover here the 
standard Fock description of photons, working, however, in a representation 
in which the self dual Maxwell connection is diagonal. A similar construction 
is available also for linear gravitons [9]. However, in that case, a number of 
new ideas come into play. The case of the Maxwell field has the advantage 
that we can focus just on one issue: Can one carry out quantization in a self 
dual representation? 

Section 2 is devoted to preliminaries. In the first part, section 2.1, we outline 
the quantization program we wish to follow. This is a simplified version of a 
more general program that is being used for quantum general relativity [7]; we 
have merely extracted the steps that are needed in the simpler, Maxwell case. In 
the second part, section 2.2, we first recall the canonical framework underlying 
Maxwell theory and then use the quantization program of section 2.1 to obtain 
the precise statement o f  what is meant by a self dual representation. Section 
3 contains the main results. We find that the modes of the self dual Maxwell 
field naturally split into two parts, which can, at the end, be identified with 
the two helicity states. (It is important to note that an explicit decomposition 



IO A. Ashtekar et at / Self duality and quantization 

of the field into its positive and negative frequency parts is not carried out 
anywhere in the construction.) We show in section 3.1 that quantization of 
positive helicity states is straightforward within the framework of the program 
although the final description is unconventional in certain respects. In section 
3.2, we show that the negative helicity states can also be quantized using 
the general framework of the program. However, now the steps involved are 
more subtle and require new mathematical tools. The final picture is then 
summarized in section 3.3. We conclude in section 4 by discussing some of 
the ramifications of these results. 

In this paper we use a canonical approach based on space-like three-surfaces. 
An analogous treatment of the Maxwell field on null planes is given in Josh 
Goldberg's contribution to this volume. 

2. Preliminaries 

Our primary aim in this paper is to use Maxwell fields as a probe to test 
certain aspects of a non-perturbative approach [6-8] to quantum gravity based 
on self dual fields. Therefore, we will closely follow the quantization program 
developed there even though the steps involved may not appear to be the most 
natural ones from the strict standpoint of the Maxwell theory. In the first part 
of this section, we outline the general program emphasizing the points at 
which new input is needed for quantization. This program is based on the 
canonical quantization method and is applicable for a wide class of systems. 
In the second part, we focus on the Maxwell field and construct the structures 
needed in the program. We will then be able to give a detailed and precise 
formulation of what is meant by a self dual representation. The problem of 
constructing this representation will be taken up in the next section. 

2.1. THE Q U A N T I Z A T I O N  P R O G R A M  

Consider a classical system with phase space F. To quantize the system, we 
wish to follow an algebraic approach. We will proceed in the following steps. * 

(i) Choose a subspace S of the space of complex valued function(al)s on F 
which is closed under the Poisson bracket operation and which is large enough 
so that any well-behaved function(al) on F can be expressed as (possibly a 
limit of) a sum of products of elements of S. Elements of S are referred to as 
elementary classical variables and are to have unambiguous quantum analogs. 
For a non-relativistic particle moving in a potential, for example, F is just 

For simplicity, we assume that there are no constraints.  A more complete discussion of  the 
program, including a t rea tmeat  o f  constraints,  is given in ref. [7]. 
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I~ 6 and the elementary classical variables are generally taken to be the three 
configuration variables q' and their conjugate momenta Pi. 

(ii) Associate with each f in S, an abstract operator f .  Even though at 
this stage there is no Hilbert space for them to act upon, we will refer to the 
f as elementary quantum operators. Consider the free associative algebra they 
generate and impose on it the (generalized) canonical commutation relations 
(CCR): 

[ f , g ]  = ih{f,"g}, Yf ,  g E S .  (2.1) 

Denote the resulting associative algebra by A. For the non-relativistic particle, 
(2.1) are just the standard Heisenberg commutation relations and elements 
of A are simply sums of products of ~i and/~, with identifications implied by 
the CCR. 

(iii) Introduce an involution operation, , ,  on A by first defining 

( f )*  = f ,  Vf  ~ S, (2.2) 

where f is the complex conjugate of the elementary classical variable f ,  and 
extend the action o f .  to all of A by requiring that it satisfy the three defining 
properties of an involution: (i) (.4 + 2/~)* = A* + ,~/~* ; (ii) (///~)* -- /~*A*; 
and (iii) (A*)* -- A, where A and/~ are arbitrary elements of A and 2 is any 
complex number. Denote the resulting .-algebra by .A I*). Note that, at this 
stage, A I*) is an abstract .-algebra; the .-operation does not correspond to 
Hermitian conjugation on any Hilbert space. For the non-relativistic particle, 
A I*) is obtained simply by making each c) i and each/)i its own ,-adjoint. 

(iv) Choose a linear representation of A on a vector space V. The *-relations 
are ignored in this step. One simply wishes to incorporate the linear relations 
between the operators and the CCR. For the non-relativistic particle, one may 
choose for V the space of smooth functions T ( q )  with compact support on 
~3, represent qi by a multiplication operator and/~i by ih times a derivative 
operator. 

(v) Introduce on V an Hermitian scalar product ( , )  by demanding that 
the abstract ,-relations become concrete Hermitian-adjointness relations: 

(T, Aq)) = (A*T,¢) ,  V.4 e A a n d V ~ , ¢  E V. (2.3) 

Note that (2.3) is now a condition on the choice of the inner product. The 
Hilbert space H is obtained by taking the Cauchy completion of (V, ( , ) ) .  

The program requires two external inputs: the choice of the space S in step 
1 and the choice of the representation in step 4. One may make "wrong" 
choices and find that the program cannot be completed (for examples, see ref. 
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[7] and also section 3.2 below). However, if the choices are viable - i.e., if 
the program can be completed at all - one is ensured of the uniqueness of 
the resulting quantum description in a certain well-defined sense [7]. For the 
non-relativistic particle, for example, the choices we made are viable and step 
5 does indeed provide the standard L 2 inner product on V. In the framework 
of this program, the text-book treatment of free fields in Minkowski space can 
be summarized as follows. The phase space F can be taken to be the space of 
(real) solutions to the field equations; smeared out fields provide elementary 
variables; the ,-relations say that each smeared out field operator is its own 
star; the representation space V is the space of holomorphic functionals of 
positive frequency classical fields; field operators are represented as sums 
of multiplication (creation) and derivative (annihilation) operators and the 
unique inner product which realizes the ,-relations is given by the Poincar6 
invariant Gaussian measure on the space of positive frequency fields (see, 
e.g., ref. [ 10 ] ). 

2.2. SELF DUAL VARIABLES FOR THE MAXWELL FIELD 

Let us begin with a brief summary of the standard phase space formulation 
of Maxwell fields. Denote by X a space-like three-plane in Minkowski space. 
Thus, X is topologically •3 and is equipped with a flat, positive definite metric 
qab. The configuration variable for the Maxwell field is generally taken to be 
the connection one-form A~ (x) - the vector potential for the magnetic field - 
on r .  Its canonically conjugate momentum is the electric field E a ( x )  o n  Z'. 
The fundamental Poisson bracket is: 

{ A a ( x ) ,  E b ( y ) }  : ~ b t ~ 3 ( x , y ) .  (2.4) 

The system has one first class constraint, OaE a ( x )  = O. One can therefore pass 
to the reduced phase space by fixing transverse gauge. For simplicity, let us 
choose this avenue. The true dynamical degrees of freedom are then contained 
in the pair (Aa v (x), E~- (x))  of transverse (i.e., divergence-free) vector fields 
on Z. Denote by F the phase space spanned by these fields; now there are no 
constraints and we are working only with the true degrees of freedom. On F,  
the only non-vanishing fundamental Poisson bracket is: 

{AaX(x), E~(y)} = • b 6 3 ( x , y ) - - Z l - l O a O b 6 3 ( X , y ) ,  (2.5) 

where A is the Laplacian operator compatible with the flat metric qab. It is 
convenient - although by no means essential - to work in the momentum 
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space. Then, the true degrees of  freedom are contained in the new dynamical 
variables qj (k),  pj (k) with j = 1,2 : 

ATa(x) -- (2g)V2 d3ke ik/ (ql(k)ma(k)  + q2(k)~-~(k)), 

E-}(x) - (2~)3/2 d3ke ik~ (pl(k)ma(k)  + p2(k)-~a(k)), 
(2.6) 

where v~ma = OaO + i s i n 0 0 a ~  is a complex vector field in the mo- 
mentum space which is transverse, ma(k)k  a = 0, and normalized so that 
ma(k)-~a(k) = 1. The Poisson brackets (2.5) are equivalent to: 

{qi( -k) ,  pj(k ' )}  = -~,j ~3(k,k ' ) ,  (2.7) 

while the fact that ATa(X) and E~-(x) are real translates to the conditions: 

-~j(k) = q j ( - k ) ,  f f j(k)  = p j ( - k ) .  (2.8) 

We are interested in using a self dual representation. Let us therefore first 
construct the self dual connection from the pair (ATa(X), E~-(x)). If we denote 
by d~ (x) the transverse vector potential of the electric field, 

1 / d3k e ~'x (Pl (k) ma(k) - p z ( k )  -~a(k)), (2.9) d T ( x ) _  (2~z)3/2 - ~  

the self dual connection is given simply by: 

+AaT (x) = - A ~ ( x )  + idaT(x). (2.10) 

Following the procedure used in general relativity [6], we now want to use 
the pair (+ATa(x),E~-(x)) as our basic variables. From the viewpoint of  the 
Maxwell theory, this choice is rather strange. However, it is in terms of  the 
analogous "hybrid" canonical variables - one of  which is complex and the 
other real - that the non-perturbative quantization program for full, non- 
linear relativity is most easily formulated. Therefore, here we will work with 
this unconventional choice. Following (2.9), let us expand +AVa(x) in terms 
of  its Fourier components. We have: 

1 / d3k eik. x 
+ A [ ( x ) -  (2x)3/2 ~ ( z ~ ( k ) m a ( k ) - z 2 ( k ) m a ( k ) ) ,  (2.11) 

with 

Z 1 (k) : -IkJql (k) + ipl (k),  z2(k) = Ikl@(k) + ip2(k). (2.12) 
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In terms of these dynamical variables, the basic Poisson brackets are given by: 

{qi(-k) ,  zj(k')} = - iSii83(k,k ') ,  (2.13) 

and the "reality conditions" (2.8) become: 

• ~ ( k )  - -z~ ( -k )  - 21klq~ ( - / ) ,  ~2(k) = - z 2 ( - k )  + 21klq2(-k). 
(2.14) 

To summarize, our basic dynamical variables will be (zj (k), qj (k)) .  They 
satisfy the Poisson bracket relations (2.13) and the reality conditions (2.14). 
The Hamiltonian for the Maxwell theory, H := f~:d3x (E T, E T + B T. B T) 
(where B T is the magnetic field), can now be expressed as: 

H = f d 3 k  ~ W~(k)z~(*), (2.15) 
J 

where ~j (k) can be be regarded as functionals of zj (k) and qj (k) given by 
(2.14). 

With this machinery at hand, we can now give a precise formulation of the 
problem we want to analyze. In the quantization program, we wish to use 
zj (k) and q)(k) as the elementary classical variables. We can then carry out 
steps 2 and 3 of the program in a straightforward fashion and arrive at a 
,-algebra ,4 (*). We again need new input in step 4. We want to use a repre- 
sentation in which the self dual connection - and hence the operators ~j (k) 
- are diagonal. The obvious choice is to use for the vector space V the space 
of polynomials ~ (z j  (k)) (which are, in particular, entire holomorphic func- 
tionals) and represent the i j  by multiplication operators. The representation 
of ~j (k) is then dictated by the generalized CCR that result from (2.13). This 
is the self dual representation we are seeking. The key questions now are: Can 
step 5 be carried out to completion? Does there exist an inner product which 
implements conditions (2.3) which arise from the reality conditions (2.14)? 
Is the inner product unique? Are the resulting Hilbert spaces large enough 
to accommodate the two helicities of photons? And, finally, is the resulting 
quantum description equivalent to the standard Fock theory? 
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3. Quantum theory 

The form of the Hamiltonian (2.14) suggests that tile Maxwell field can 
be regarded as an assembly of harmonic oscillators, containing two oscillators 
(labelled by j )  per momentum vector k. Note furthermore, that the oscillators 
with j = I are completely decoupled from those with j = 2; each set is 
separately closed under the Poisson bracket relations (2.13) and the reality 
conditions (2.14). Therefore, we can simplify our task by first examining each 
set separately and then combine the results we obtain. 

Let us begin by reviewing [7] the situation with a single harmonic oscillator. 
The phase space F is now two-dimensional, co-ordinatized by the real functions 
q and p. Following eq. (2.7), let us choose the fundamental Poisson bracket 
to be {q,p} = -1 .  The analog of  the complex, self dual variable is z = q + ip 
[see eq. (2.10)]. The idea now would be to regard (z ,q)  as the elementary 
classical variables. Together with constants, they are indeed closed under the 
Poisson bracket 

{q, z} = - i ,  (3.1) 

as well as the reality conditions 

~" = q, 2~ = - z  + 2q. (3.2) 

The Hamiltonian H : =  q2 "4-p2 now becomes: 

H = -~z - ( - z  + 2 q ) z .  (3.3) 

Let us compare this structure with the one we encountered in section 2.2. 
If we let q and z here be, respectively, the analogs of  q j ( - k )  and z j ( k )  of 
section 2.2, we find that for j = 2 the two sets are completely analogous. For 
j = 1, however, there is a discrepancy: while the Poisson brackets and the 
Hamiltonians match, the reality conditions differ by a sign in one of the terms. 
This difference will turn out to play a crucial role in the implementation of  
the quantization program. 

We begin in section 3.1 with the simpler, j = 2 case. We carry out the 
quantization program of section 2.1 step by step for the harmonic oscillator 
described by equations (3.1)-(3.3) .  In the second part, section 3.2, we ex- 
amine the ramifications of the sign discrepancy in the reality condition for 
the j = 1 modes. We will find that this sign difference forces one to en- 
large the framework and allow as states holomorphic distributions. In the last 
part, section 3.3, we collect all these results and present a coherent quantum 
description of the Maxwell field in the self dual representation. 
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3.1. THE j = 2 MODES 

The first step in the quantization program of section 2. l is the introduction 
of the space S of  elementary classical variables. For the harmonic oscillator 
considered above, the natural choice is the complex vector space spanned by 
the functions l, z ,q  on the real, two-dimensional phase space F: This space 
is closed under the Poisson bracket operations and clearly "large enough" 
since it provides a (complex) co-ordinatization of  F.  To generate the algebra 
A ,  introduce, first, the elementary quantum operators, 1,~,q, and on the 
collection of their formal sums of formal products, impose the C C R :  

A 

[~1, z]  = i h { q , z }  - h .  (3.4) 

Using eq. (3.2), the ,-relations are also straightforward to impose. Set: 

q* = ~, ,:* - --" + 2 q .  (3 .5 )  

It is easy to check that the resulting ,-algebra .A I*l is isomorphic to the standard 
,-algebra constructed from the operators i, q,/} that one finds in text-books. 

The next step is to find a representation of this algebra. It is here that the 
presence of the hybrid variables (z, q) suggests a new avenue. Let V now be 
the vector space of entire holomorphic functions T ( z )  and let the concrete 
operators representing q and ,~ be 

q.  7V(z)  = h dTJ(z )  d---F-,- ' z - ~ ( z )  = z W ( z ) ,  (3.6) 

so that the canonical commutation relations (3.4) are satisfied. Now, the 
question is whether the last step, step 5, of  the quantization program can be 
carried out successfully: Is there is an inner product on V which realizes the 
,-relations (3.5)? Let us begin by introducing a general measure /~(z, ~) on 
the complex z-plane on which the wave functions are defined and set the 
inner product to be: 

(~V(z) I ~  (z ) )  = i f dz A dff/a(z, 5) ~ ( z )  • ( z ) .  (3.7) 

(The factor of i arises because dp A dq - g2 = 2i dz A d~.) Positivity of  norms 
requires that ~ (z, if) must be real. This condition ensures that the requirement 
that q is its own Hermitian adjoint is satisfied if one chooses /x of  the form 
/~ - - / l ( z  + £,). It only remains to impose the ,-relation on ~ as a condition on 
the choice of  the inner product. It turns out that this condition now determines 
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the form of / t  completely! Up to an overall multiplicative constant, p is given 
by: 

~(z ,  2) = e x p ( - ~ h ( z + . ~ ) 2 ) .  

Thus, the Hilbert space of quantum states consists of entire holomorphic 
functions of z which are normalizable with respect to the inner product: 

if dz Ad,z exp ( - ~ h ( Z  + 5)2 ) T(z)CI) (z ) .  (3.8) 

Note that there is freedom to add to the expression of the operator ~ any 
holomorphic function of z; this addition will not alter the commutation 
relations. It is easy to work out the change in the measure caused by this 
addition and show that the resulting quantum theory is unitarily equivalent 
to the one obtained above. 

The question now is whether the space of normalizable states is "sufficiently 
large". The simplest way to analyze this issue is to relate our Hilbert space to 
the one used in the Bargmann quantization [11] of the harmonic oscillator. 
Given a T ( z )  in our Hilbert space, set f ( z )  = exp ( - z2 /4h )  T ( z ) .  Then, 
the finiteness of the norm of T (z) is equivalent to: 

if d z A d - e  -z- f /2h I f ( - ) l  2 < oc. (3.9) 

Note that the left hand side is precisely the norm of f ( z )  in the Bargmann Hil 
bert space! [In particular, the integral converges for all polynomials f ( z ) . ]  
Thus, there is a 1-1 correspondence between our quantum states ~ ( z )  and 
the Bargmann states f (z); the space of normalizable states is indeed "large 
enough". Let us translate the action of the operators defined in (3.6) to the 
space of Bargmann states f ( z ) ,  using the unitary transform T ( z )  ~ f ( z )  = 
e x p ( - z 2 / 4 h ) ~ ( z ) .  We find: 

• f ( z )  = h d f ( z )  z 
d-----2S- ~ + ~ f  (z),  ~. . f (z) = z f  (z) . (3.10) 

Equations (3.10) are precisely the expressions of the operators c~ and ~ in the 
Bargmann representation. Thus, the representation we constructed using the 
hybrid (q, z)-variables in the quantization program is unitarily equivalent to 
the Bargmann representation. Finally, note that in both these representations 
,~ is the creation operator and ~* is the annihilation operator. 

We conclude this subsection with a remark relating our z-representation 
to the standard Schr6dinger representation of the quantum oscillator. Our 
choice of V and the representation (eq. 3.6) was motivated by the fact 
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that z is complex and ~ and ~ satisfy the canonical commutation relations. 
Note, however, that one can also arrive at this choice systematically [12] 
using the fact that the passage from (q,p) to (q, z) corresponds to a simple 
canonical transformation (q,p) ~ (q, dF/dq + ip) with generating function 
F(q) = ½q2. Had we used the pair (q,p) as our basic variables, the algebraic 
quantization program would have led us, as indicated in section 2.1, to the 
Schr6dinger representation of the harmonic oscillator. In this picture, the states 
are represented by square-integrable functions ~ (q) of the real variable q and 
the basic operators are given by t~. ~ (q) = qT (q) and/~. T (q) = ih (d~ /dq ) .  
The canonical transformation now lets us pass to the new "momentum" or 
z-representation via the usual transform between the configuration and the 
momentum representations: 

/ ( 7  q2) ~ ( z ) : =  dq exp 2k ~U(q). (3.11) 

The function T (z) is clearly holomorphic and, given a square-integrable T (q), 
the integral converges for all (complex values of) z. Thus, the result of the 
transform of any Schr6dinger wave function is an entire holomorphic function 
in the z-representation. Using the expressions of  the operators ~ and/~ in the 
Schrrdinger representation, and the definition ~ = ~ + i/~ of ~, we can now 
transform the operators ~ and ~ from the q to the z-representation. The result 
is precisely eq. (3.6). 

3.2. THE j = 1 MODES 
In terms of ( z j (k ) ,q j (k ) ) ,  the only difference in the j = 1 and j = 2 

modes is in the reality conditions. Let us therefore consider again a single 
simple harmonic oscillator with hybrid phase space variables (z, q), proceed 
as in section 3.1 to construct the quantum algebra .A using the CCR (3.4), 
but introduce the ,-relation via: 

~* = ~, ~.* = - :~  - 2 ~ .  ( 3 . 1 2 )  

The only difference between (3.12) and the ,-relations (3.5) of section 3.1 is 
in the sign of the very last term. Using these new ,-relations, we can complete 

step 3 of the program and obtain a ,-algebra ~(*). Note that .A t*) and ~(*) 
are constructed from the same associative algebra .A; the difference is only in 
the involution operation , .  Since the ,-relations are ignored in the step 4 of 
the program, we can attempt to use the same strategy as in section 3. I. Let us 
then choose V to consist of entire holomorphic functions of z and represent 
the operators via (3.6). Then, the canonical commutation relations (3.4) are 
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satisfied and we have a representation of the quantum algebra A. Our final task 
is to introduce on V an inner product so that the ,-relations (3.12) become 
concrete Hermitian-adjointness relations on the resulting Hilbert space. As 
before, let us first make the ansatz (3.7) and then attempt to determine the 
measure/~ (z, ~) using (3.12). As before, the measure is uniquely determined. 
However, since there is a change in sign in the reality condition, the sign in 
the exponent of the measure is now the opposite of what it was in section 3.1. 
We obtain: 

/ t ( z , g )  = e x p  (+~-~h ( z  + g ) 2  ) . ( 3 . 1 3 )  

Consequently, the arguments that led us in section 3.1 to the conclusion that 
the Hilbert space of  normalizable states is infinite dimensional (and naturally 
isomorphic to the Bargmann Hilbert space), now implies that there are no 
(non-zero) entire holomorphic functions which are normalizable with respect 
to the inner product of (3.13)! Thus, the change in sign in the reality conditions 
make a crucial difference: a new strategy is now needed in the choice of the 
linear representation. * 

A solution to this problem is suggested by the following considerations. A 
simple calculation shows that the change in the sign in the reality conditions 
amounts to exchanging the creation and annihilation operators. Thus, while 
the operator :~ served as the creator in section 3.1, if we can complete the 
quantization program, it would now serve as the annihilation operator. It 
must therefore map the vacuum to zero. This suggests that, if the program 
is to succeed, we need to represent the vacuum by a "holomorphic, delta 
distribution" J (z). Excited states can then be built by acting on this vacuum 
repeatedly by ~. 

Since the meaning of  these holomorphic distributions is not a priori clear, 
let us make a brief detour to introduce some mathematical techniques that 
are needed. Let us begin by defining the holomorphic generalized function 
(or distribution) J(z).  It will be the complex linear mapping from the space 
of functions of the type ~fi(z)gi(- f ) ,  where J}(z) are entire holomorphic 
functions and gi (7) are entire anti-holomorphic functions, to the space of  

The new strategy is motivated by the transform from the q to the z-representation discussed 
at the end of section 3.1. Note also that the choice of the vector space V we are about 
to introduce would be necessary also in the Bargmann quantization, had the symplectic 
structure been of opposite sign, or, alternatively, if the symplectic structure had been the 
same but we had used anti-holomorphic wave functions. In either ease, we would have found 
that the measure needed to ensure the correct reality conditions is exp(+ z-~/2h), whence 
no entire (anti-)holomorphic function would have been normalizable. We would then have 
to use for states the holomorphic distributions introduced below. 
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entire anti-holomorphic functions, given by: 

b (z) o y~ fi (z)gi (-~) = Y~ f (O)gi (~). (3.14) 
i i 

Next, we can define the anti-holomorphic distribution b (~) simply by taking 
the complex conjugate of b (z). This new distribution has the action: 

b(-~) o y~f(z)gi(-~) = ~f(z)gi(O). (3.15) 
i i 

From these two basic distributions, we can construct others. The product of  
a polynomial a(z,-f) with a distribution ~ ' (z ,~)  will be a new distribution, 
given by: 

[a(z,-Z)J:(z ,-Z) ] o y ~ f ( z ) g i ( - e )  : =  ~ ' ( z , ~ )  o a(z , -Z)  ~-~J~(z)gi(-Z) . 
i i (3.16) 

Finally, using the Leibnitz rule as a motivation, we define the derivative of a 
distribution Y'(z), as 

~(z) o~fi(z)g;(~):= Uzz ~(z)o~fi(z)gi(~) 
i i 

d 
-5=(z) o -~ y]~f(z)gi(-f). (3.17) 

The derivative with respect to 2 is defined similarly. As an example, let us 
compute the derivatives of b (z). We have: 

d 
-d2zz J ( Z ) = o, 

-~z (z) Y]~f(z)gi(-f)  ~ d r ( z )  gi(~). (3.18) 
i i dz z =0 

Thus, b (z) is "'holomorphic" and its derivative with respect to z is a distribution 
with the expected property. Finally, we notice that the product of the two 
distributions (3.14) and (3.15) is well defined; it is just the two dimensional 
J-distribution and therefore admits the standard integral representation: 

[J(z)J(~)] o y ~ f ( z ) g i ( ~ )  = y]~fi(O)gi(O) 
i i 

=- f dp ^ dq j2(q,p;O,O) y~f ( z )g i ( -Z) ,  (3.19) 
. i  i 
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where we have used z = q + ip. Thus, one can regard J (z) as the "holomorphic 
square root" of the standard two-dimensional J-distribution on the two-plane, 
picked out by the complex structure. 

With this machinery at hand, let us proceed with the quantization program. 
In step 4 of the program let us use, as the carrier space for the representation, 
the space V spanned by the holomorphic distributions of the type 7 j ( z )  = 

a,, ( z ) (d" J  ( z ) / d z " )  where each a, (z) is a polynomial in z. Then, we can 
continue to represent the operators ~ and .~ by (3.6). Let us define an inner 
product on V via: 

( 7 ' ( z ) l ¢ ( z ) )  := 

= ifdz^d-eu(z,-e)  (3.20) 

where/z = / t(z,2 ~) is a measure to be determined by the reality conditions 
and where, in the second step, we have used the integral representation (3.19) 
of the product of holomorphic and anti-holomorphic distributions. Thus, the 
ansatz is formally the same as the one used earlier. Furthermore, the previous 
calculations go through step by step because they only use the fact that the 
states are holomorphic, i.e., are annihilated by the operator didO, and the 
measure/t  (z ,~)  is therefore again given by (3.13). However, now the integral 
does converge because of the presence of J-distributions in the expressions of 
our states. Thus, the inner product is well defined for all elements of V. The 
full Hilbert space 7-t is obtained just by Cauchy completion. Note incidentally 
that, while we began with the J-distributions with support at z = 0, the Cauchy 
completion includes states with support at other points. ~ ( z )  = J (z ,  z0), for 
example, belongs to 7-t and represents a coherent state. 

As is expected from our motivating remarks, in this representation it is the 
annihilation operator that is represented by .~. The vacuum state is simply the 
normalized state ~0(z) = J ( z ) .  An orthogonal basis in the Hilbert space is 
provided by the states d"J ( z ) / d z " .  [Thus, we could also have let the represen- 
tation space V to be the linear span of states of the type ~ a,, (dnJ ( z ) / d z  n ) ,  

where a,, are constants.] The Hamiltonian is given by 

/ : / =  ½(~*~ + 1) ~ - ½ [ ( z  + 2 h d / d z ) z -  I]. (3.21) 

Finally, note that, in spite of the appearance of distributions, this representa- 
tion does diagonalize the operator ~; it acts as the multiplication operator. 

To conclude this subsection, we wish to point out that there is in fact 
an alternate strategy available to quantize the harmonic oscillator with the 
present reality conditions. Recall that the quantization program requires two 
new inputs: the choice of the space S of elementary classical variables in the 
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first step and of  the representation of the algebra .4 in the fourth step. In 
this subsection, we used the same elementary variables as in section 3.1 and 
changed the carrier space V of the representation of .4 to accommodate the 
new reality conditions. Alternatively, we could have changed the space S itself 
in step I. Let us choose (q,~) as the elementary variables in place of (q, z). 
Then, one can in fact proceed exactly as in section 3. l, replacing z everywhere 
by ~. The program can be completed without recourse to distributions - the 
states are just polynomials in 2 - and yet the resulting description is equivalent 
to the one we have obtained here. However, in this representation, it is ~ - ~* 
that is diagonal rather than ~! Thus, although this strategy is viable, it would 
have led us to the anti-sel f  dual representation of j = 1 modes in the Maxwell 
theory. We are led to consider distributions precisely because we want to retain 
the self dual representation for the j = 1 modes as well. 

3.3. SELF DUAL REPRESENTATION 

Let us now combine the results of the last two subsections to construct the 
self dual representation for the quantum Maxwell field. This is the represen- 
tation in which the self dual connection + A ~ ( x )  - or, equivalently, £j (k) - 
is diagonal. 

As discussed in the beginning of this section, we are led to use zj (k), qj (k) 
as the elementary classical variables in the quantization program of section 
2.1. The elementary quantum operators are then zi (k), ~j (k) and the algebra 
.4 is generated by their formal sums of formal products subject to the CCR 

[~  ( - k ) ,  ~j. (k') ] = Jij h8 3 (k, k'),  (3.22) 

which mirror the Poisson bracket relations (2.13). The next step is the intro- 
duction of the abstract ,-relations. The reality conditions (2.14) lead us to 
the relations: 

(~t (k))*  = - ~  ( - k )  - 21kl~ ( - k ) ,  

(~2(k))* : - ~ 2 ( - k )  + 21kl~2 ( - k  ). (3.23) 

Next, we wish to select a representation of  A, ignoring for the moment the 
,-relations. Since we want the operators ~j (k) to act by multiplication, we 
are led to choose for the carder space V, the space spanned by holomorphic 
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distributions ~ (zj (k) ) of the type: 

N fd3k~ " f }P(z j (k) )  = h ( z j ( k ) )  4- y ~  • 1"7~_l f j t . . . j n ( k l  . . . . .  kn) 
n=l 

J J 
x - -  J ( z l ( k ) ) J ( z 2 ( k ) ) ,  

Jzj, (k~) Jzj ,  (kn) 
(3.24) 

where h ( z i ( k ) )  is a holomorphic functional of z j ( k )  and where the re- 
peated indices ji a r e  summed o v e r  ji = 1, 2. Thus, at this stage, without 
pre-judging the issue we allow both holomorphic functions and derivatives 
of J-distributions for j = 1 as well as j = 2 modes. On this V, the basic 
operators ~j (k) and ~j (k) are represented by: 

6 
~ ; ( - k ) - ~ - ' ( z j ( k ) )  = h Jz~(k-----S ~ ( z ~ ( k ) ) ,  

z i ( k ) "  ~ i ( z j ( k ) )  = z i ( k ) ~ ' l ( z j ( k ) ) ,  (3.25) 

so that the CCR (3.22) are satisfied. The second of  these equations ensures that 
we are working in the self dual representation and the first then provides the 
simplest way to achieve (3.22). Our job now is to select the inner product using 
the reality conditions. The similarity of  the two modes to the two treatments 
of the harmonic oscillator enables us to follow the procedures of sections 3.1 
and 3.2 step by step. The logic of these calculations is straightforward and care 
is needed only to keep track of which modes are associated with momentum 
k and which are associated with - k .  Therefore, we shall simply report the 
results. 

The inner product is again expressible as: 

x~(zj(k),~i(k)) ~(zj) ¢~ (zj), (3.26) 

where dl is the infinite dimensional exterior derivative on the space spanned by 
(zj (k),-Zj (k)) .  The reality conditions again lead to a (functional) differential 
equation. It has a unique solution: Up to an overall constant multiplicative 
factor, the measure is given by: 

r ( -1  Y ~ ( z j ( k ) , ~ j ( k ) )  = e x p / -  
4h k J 

f d3kl l ] × -rrr- ( z j (k )  + ~ j ( - k ) )  ( z~ ( -k )  + ~ j ( k ) )  . (3.27) 
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A simple calculation shows that, as in section 3.1, the measure "damps cor- 
rectly" for j = 2 modes so that the normalizable states are just holomorphic 
functionals h(z2(k)) of z2(k). This space is left invariant by the entire al- 
gebra .A t*) . (If  we use distributional states as well for these modes, the norm 
fails to be positive definite.) For the j = l modes, on the other hand, as in 
section 3.2, the only holomorphic functional h (zl (k ) )  that is normalizable is 
the zero functional. The normalizable states are all distributional in z I (k)- 
Thus, a general normalized state is a superposition of  states of  the form: 

f d3kl .. fd3kn 
~(zj) = Iklt " ~ f (kl . . . . .  k,) 

x . . . . .  O(zl (k ) )  
~zl (kl)  ~zl (kn) 

× P(zz(k)) exp - ~  (zz(k)zz(-k)) , (3.28) 

where P(z2 (k)) is a polynomial in Zz (k).  The norm of  this state is given by: 

II (zJ)ll2 = (/d3ktlk' I " " [a --~d3kn I f  (kl , . . .  , kn)l 2) 

x [ f a z 2 ( k )  A ~ ( t , )  

xexp(- /d3k- -T- I z2 (k )12)lP(zz(k))l 2] (3.29) 

Finally, to make contact with the Fock representation, let us write down 
the explicit expressions of  the annihilat ion operators, the vacuum state and 
the Hamiltonian.  As one might expect from sections 3.1 and 3.2, there is an 
asymmetry between the two modes. The annihilat ion operators are now given 
by £1 (k) for j = 1 and by (z2(k))* for the j = 2 modes. Consequently, there 
is also an asymmetry in the expression of  the vacuum state. The vacuum is 
given by 

~Po(Zj) = 6(z~ (k ) ) exp ( ~-~ f d3k [kl-~ zz(k )zz(-k ) ) . 

It is interesting to translate this expression back in terms of  the self dual 
connection +AXa(X) using (2.11). One finds: ~0(+A T) = ~(Zl (k))xexpY(A2), 
where Y (A2) is just the U(1 ) Chern-Simons  action of  the self dual connection 
A2 constructed from z2. Thus, on the j = 2 sector, not only is the exponential 
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o f  the Chern -S imons  action a normalizable state, but  it is in fact the vacuum."  
This comes about  only because we have used the self dual representation.  
On the j = 1 sector, on the other  han& the exponential  o f  the C h e m -  
Simons funct ional  - being an ordinary holomorphic  functional  - fails to 
be normalizable;  only the holomorphic  distributions are normalizable in this 
sector. Finally, the normal  ordered  Hamil tonian  is: 

= - fd3k (-'-;(k)--'t(k) + 

(3.30) 

Using the argument  given in the case o f  the harmonic  oscillator, it is straight- 
forward to establish that,  in spite o f  this apparent  asymmet~ ' ,  this represen- 
tat ion is unitari ly equivalent  to the Bargmann - and hence also the Fock - 
representat ion o f  free photons.  The  self dual representat ion is indeed ~-iable 
within the f ramework  o f  the general program. 

4. D i s c u s s i o n  

The  analysis o f  the last two sections raises several interesting issues. 
(i) Perhaps the most  surprising aspect o f  this analysis is the appearance 

o f  holomorphic  distributions. These appear  to be indispensible to obtain a 
representat ion in which the self dual connect ion is diagonal. Our  t rea tment  o f  
these distributions, however,  is ra ther  naive. Presumably there is a systematic 
mathematical  theory that underlies these ideas. It is likely that  such a theo~" 
would have other  applications to quan tum theo~- as well as to o ther  areas o f  
physics. 

(ii) It is encouraging that  the self dual representat ion does in fact exist for  
the Maxwell field because the conceptual  ingredients used in its construct ion 
are available also in general relati~-ity [6 -8] .  Indeed, we have followed, step 
by step, a quant iza t ion program which was in t roduced in the context  o f  
quan tum general relativit3. Fur thermore ,  our  basic canonical  variables are the 
direct analogs o f  the ones used in that  program. In general relativi~', the 
corresponding self dual representat ion has been used to address a number  o f  

In retrospect this is not totall~- surprising_ The Hamiltonian densi~ of the Maxwell field 
can indeed be ~xitten in the form of a product. +Ba-B,~. On the j = 2 sector. -B= 
acts essentially as an annihilation operator. The state it kills is just the exponential of the 
Chern-Simons action. 
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conceptual as well as technical questions. The conceptual problems include 
the possibility of  the gravitational CP violation and the issue of time [7]. 
An example of  the technical progress is the availability of exact solutions 
to quantum constraints in Bianchi IX models [13]. The key assumption in 
these analyses is the existence of  a representation which is diagonal in the self 
dual (gravitational) connection in which the Hermitian operator (analogous 
to) /~ar(X) can be expressed by a functional derivative. A priori it is not 
obvious that these assumptions are viable. That they in fact are viable in the 
well-understood Maxwell theory is therefore reassuring. 

(iii) Nowhere in the construction did we carry out a decomposition of fields 
into their positive and negative frequency parts. The two helicity modes, la- 
belled by j ,  arose as a technical by-product in the process of  implementing 
the quantization program, rather than as irreducible representations of  the 
Poincar6 group. Indeed, we did not have to appeal anywhere to the Poincar6 
invariance. Rather, it is the reality conditions that selected for us the in- 
ner product and the vacuum. Of course, had we not restricted ourselves to 
Minkowski space, we might not have been able to carry out the quantization 
program to completion. In this sense, the existence of the Poincar6 invariance 
has presumably been used indirectly somewhere in the construction. The ob- 
servation is rather that, since the group does not feature in an explicit way 
anywhere, one can be hopeful that the program may be successful in other 
contexts as well. This hope is borne out in 2 + 1 dimensional quantum general 
relativity. 

(iv) Finally, this example has taught us, rather clearly, an important lesson 
about the quantization program: the actual imposition of  the reality conditions 
can be quite an involved procedure. Even after the elementary classical vari- 
ables are fixed, one may still have to invent new representations of the algebra 
of quantum operators to ensure the existence of a sufficiently large physical 
Hilbert space. There is as yet no systematic procedure available to construct 
them. In particular, the self dual representation that we were led to for the 
j = 1 modes seems to fall outside the geometric quantization program since 
the distributions involved do not appear to arise as polarized cross-sections of  
a line bundle on the phase space. Is there perhaps a more general framework 
that we can rely on for guidelines? 
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